With the development of new fitting methods, their increased use in applications, and improved computer languages, the fitting of statistical distributions to data has come a long way since the introduction of the generalized lambda distribution (GLD) in 1969. Handbook of Fitting Statistical Distributions with R presents the latest and best methods, algorithms, and computations for fitting distributions to data. It also provides in-depth coverage of cutting-edge applications.
The book begins with commentary by three GLD pioneers: John S. Ramberg, Bruce Schmeiser, and Pandu R. Tadikamalla. These leaders of the field give their perspectives on the development of the GLD. The book then covers GLD methodology and Johnson, kappa, and response modeling methodology fitting systems. It also describes recent additions to GLD and generalized bootstrap methods as well as a new approach to goodness-of-fit assessment. The final group of chapters explores real-world applications in agriculture, reliability estimation, hurricanes/typhoons/cyclones, hail storms, water systems, insurance and inventory management, and materials science. The applications in these chapters complement others in the book that deal with competitive bidding, medicine, biology, meteorology, bioassays, economics, quality management, engineering, control, and planning.
New results in the field have generated a rich array of methods for practitioners. Making sense of this extensive growth, this comprehensive and authoritative handbook improves your understanding of the methodology and applications of fitting statistical distributions. The accompanying CD-ROM includes the R programs used for many of the computations.