libcats.org
Главная

Matrix Methods in Data Mining and Pattern Recognition

Обложка книги Matrix Methods in Data Mining and Pattern Recognition

Matrix Methods in Data Mining and Pattern Recognition

Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB?®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google?” search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book. Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful. Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; P
EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.
Популярные книги за неделю:

Каникулы

Автор:
Размер книги: 13 Kb

Очищение

Автор:
Категория: История
Размер книги: 602 Kb

Ремонт импортных телевизоров

Автор: , Автор:
Категория: civil, civil, hardware
Размер книги: 5.24 Mb

ВАЗ 2110i, -2111i, -2112i

Автор:
Категория: civil, civil, transport
Размер книги: 57.35 Mb

Быль-сказка о карандашах и красках

Автор:
Категория: Children
Размер книги: 5.81 Mb

Mein Kampf

Автор:
Категория: fiction
Размер книги: 701 Kb
Только что пользователи скачали эти книги:

Прибой у Котомари

Автор:
Категория: О войне
Размер книги: 334 Kb

Северна Парк. Лекарство от всего

Автор:
Размер книги: 35 Kb

Civil war

Автор:
Категория: Исторические
Размер книги: 39.22 Mb

The Lovely Bones

Автор:
Размер книги: 933 Kb

Как удобрять приусадебные участки

Автор:
Категория: house, home, house, plant
Размер книги: 14.88 Mb

Suenonauta

Автор:
Категория: fiction
Размер книги: 242 Kb

Giant Killer

Автор:
Категория: fiction
Размер книги: 133 Kb

Tommy's Tale

Автор:
Категория: fiction
Размер книги: 202 Kb

Skipping a Beat

Автор:
Категория: fiction
Размер книги: 599 Kb