This book presents an in-depth study and a solution technique for an important class of optimization problems. This class is characterized by special constraints: parameter-dependent convex programs, variational inequalities or complementarity problems. All these so-called equilibrium constraints are mostly treated in a convenient form of generalized equations. The book begins with a chapter on auxiliary results followed by a description of the main numerical tools: a bundle method of nonsmooth optimization and a nonsmooth variant of Newton's method. Following this, stability and sensitivity theory for generalized equations is presented, based on the concept of strong regularity. This enables one to apply the generalized differential calculus for Lipschitz maps to derive optimality conditions and to arrive at a solution method. A large part of the book focuses on applications coming from continuum mechanics and mathematical economy. A series of nonacademic problems is introduced and analyzed in detail. Each problem is accompanied with examples that show the efficiency of the solution method. This book is addressed to applied mathematicians and engineers working in continuum mechanics, operations research and economic modelling. Students interested in optimization will also find the book useful.
Ссылка удалена правообладателем ---- The book removed at the request of the copyright holder.