|
|
libcats.org
Challenges in Geometry: for Mathematical Olympians Past and PresentChristopher J. BradleyOver the past couple of years, many books have appeared that concern mathematical problem solving, in particular, in the vein of mathematical olympiads. Challenges in Geometry is one of them, and it is in a class by itself. I would qualify it as 'a bit excentric'. Let me remind you that olympiads are for (talented) high school pupils.
The title mentions geometry, but the book almost exclusively concerns combinatorial and number theoretic problems inspired by geometric configurations. For example: characterize all integer-sided triangles with an angle of 60 degrees. Using the cosine rule, this boils down to solving the diophantine equation c^2 = a^2 - ab + b^2. The formula density is truly amazing, in many places exceeding that of the accompanying prose. Only 10 pages are without formulae, and these include the preface (2 p.), references (2 p.), and index (3 p.). Fortunately, there are also 63 figures for the visually inclined. There is even some attention for the historic context of some problems. The reader does need to have a strong background in Euclidean geometry. Theorems by Apollonius, Ceva, de Moivre, Menelaus, and Ptolemy are applied without further explanation. But also modular arithmetic, Gaussian integers, unimodular matrices, determinants, partial derivatives, complex numbers, 2-variable Taylor series, and more pop up. This cannot be considered typical high school knowledge nowadays. A few of the problems treated by Bradley are more widely known, such as counting the number of lattice points in a lattice polygon (Pick's Theorem), and characterizing Euler bricks (rectangular blocks whose edges and face diagonals all have integer lengths) and the related -but as yet undiscovered- perfect cuboid (which in addition has an integer main diagonal). The proof style is quite terse. This makes for quick reading and helps maintain a good overview. But the proofs contain 'rabbits' pulled from the hat, without any guidance, thereby hindering the understanding. The book offers many exercises, all with solutions (15 p.). The appendix treats areal co-ordinates, also known as Barycentric co-ordinates; a useful topic hardly treated in textbooks. This makes the book a good resource for olympiad coaches, but prospective olympians might well be scared off.
Популярные книги за неделю:
Проектирование и строительство. Дом, квартира, садАвтор: Петер Нойферт, Автор: Людвиг Нефф
Размер книги: 20.83 Mb
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Радиолюбительские схемы на ИС типа 555Автор: Трейстер Р.Категория: Электротехника и связь
Размер книги: 13.64 Mb
Только что пользователи скачали эти книги:
Мишкин снегАвтор: Скалон Андрей ВасильевичКатегория: Русская классическая проза
Размер книги: 32 Kb
Algebra. Abstract and ConcreteАвтор: F. GoodmanКатегория: Mathematics, Algebra and Trigonometry
Размер книги: 6.77 Mb
Potential Function Methods for Approximately Solving Linear Programming ProblemsАвтор: Daniel Bienstock
Размер книги: 6.96 Mb
The White House and the World: A Global Development Agenda for the Next U.S. PresidentАвтор: Nancy Birdsall
Размер книги: 4.63 Mb
Bonfire of Roadmaps (Brad and Michele Moore Roots Music Series)Автор: Joe Ely
Размер книги: 2.02 Mb
Villains & Vigilantes, Revised Edition (Core Rules)Автор: Jeff Dee, Автор: Jack Herman
Размер книги: 13.05 Mb
|
|
|