|
|
libcats.org
Statistical Language Models for Information RetrievalChengXiang ZhaiAs online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions
Скачать книгу бесплатно (pdf, 708 Kb)
Читать «Statistical Language Models for Information Retrieval» EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.
Только что пользователи скачали эти книги:
Проектирование и строительство. Дом, квартира, садАвтор: Петер Нойферт, Автор: Людвиг Нефф
Размер книги: 20.83 Mb
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Радиолюбительские схемы на ИС типа 555Автор: Трейстер Р.Категория: Электротехника и связь
Размер книги: 13.64 Mb
Note on an Experimental Problem of the Late A. G. WebsterАвтор: Hitchcock E. L.
Размер книги: 248 Kb
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 8 conf., AAECC-8Автор: Shojiro SakataКатегория: Cs_Computer science, CsLn_Lecture notes
Размер книги: 4.18 Mb
Your Research Project: A Step-by-Step Guide for the First-Time ResearcherАвтор: Dr Nicholas Walliman
Размер книги: 3.25 Mb
|
|
|