It is impossible to predict the exact behavior of all biological systems and how these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented how these sorts of patterns are the consequences of deceptively simple rules that determine the nature of the patterns created. Chaos in Ecology will explain how simple beginnings result in complicated results.
Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations.
It is impossible to predict the exact behavior of almost all biological systems and yet these same systems are exemplified by patterns of complexity and regularity. Decades of research in ecology have documented that these sorts of patterns are the consequence of deceptively simple rules that determine the nature of the patterns created. In essence, simple beginnings result in complicated results. This realization is captured in the mathematical notion of "chaos" and is rendered intuitive by the oft-repeated metaphor: "A butterfly beats its wings in China and causing a thunderstorm in the Midwest." Thus, seemingly trivial initial conditions (e.g. a butterfly in China) cascade through a series of intermediate events to create a significant large-scale event (e.g. a thunderstorm). Chaos in Ecology is the inaugural volume of Theoretical Ecology Series. The authors of this volume have employed data from a proven model system in population dynamics. As a result, this book will be of interest to anyone interested in the ecology of populations.
Ссылка удалена правообладателем ---- The book removed at the request of the copyright holder.