|
libcats.org
Metric Structures for Riemannian and Non-Riemannian SpacesMikhail Gromov, Jacques LaFontaine, Pierre Pansu, S. M. Bates, M. Katz, P. Pansu, S. SemmesBased on "Structures Mtriques des Varites Riemanninnes", edited by J. LaFontaine & P. Pansu.
Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory. The new wave began with seminal papers by Svarc and Milnor on growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This was followed by the creation of the asymptotic metric theory of infinite groups by Gromov. The structural metric approach to the Riemannian category, tracing back to Cheegers thesis, pivots around the notion of the Gromov-Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy-Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity. The first stages of the new developments were presented in a course delivered by Gromov in Paris, and turned into the famous 1979 Green Book by LaFontaine and Pansu. The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices---by Gromov on Levys inequality, by Pansu on quasiconvex domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures---as well as an extensive bibliography and index round out this unique and beautiful book.
Популярные книги за неделю:
![]() Самодельные детали для сельского радиоприемникаАвтор: Авторы: З.Б.Гинзбург, Автор: Ф.И.Тарасов.Категория: радиоэлектроника
Размер книги: 1.40 Mb
![]() Английский школьникам. Тренажер по чтению. Буквы и звукиАвтор: Е. В. Русинова
Размер книги: 12.41 Mb
![]() Тестирование Дот Ком, или Пособие по жестокому обращению с багами в интернет-стартапахАвтор: Роман Савин
Размер книги: 5.26 Mb
![]() Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
![]() НЛП. Люди, которые играют ролиАвтор: Бакиров АнварКатегория: Нейро-лингвистическое программирование (НЛП)
Размер книги: 1.09 Mb
Только что пользователи скачали эти книги:
![]() Дневник партизанских действии 1812 годаАвтор: Давыдов ДенисКатегория: Биографии и Мемуары
Размер книги: 598 Kb
![]() Борьба Давида с ГолиафомАвтор: Акунов ВольфгангКатегория: Публицистика, История
Размер книги: 157 Kb
![]() Валерий ЧкаловАвтор: Водопьянов Михаил ВасильевичКатегория: Биографии и Мемуары
Размер книги: 1.24 Mb
![]() Моделирование методом Монте-Карло в статистической физике: ВведениеАвтор: Биндер К., Автор: Хеерман Д.В.
Размер книги: 4.51 Mb
![]() Halbleiter-SchaltungstechnikАвтор: Ulrich Tietze, Автор: Christoph SchenkКатегория: E_Engineering, EE_Electrical engineering
Размер книги: 15.15 Mb
|
|