Continuous Stochastic Calculus with Applications to Finance
Michael Meyer
Time spent to read the book in detail: Four weeks
The book, 295 pages, is ordered as follows:
Chapter 1 (First 50 pages):
These cover discreet time martingale theory.
Expectation/Conditional expectation: The coverage here is unusual and I found it irritating. The author defines conditional expectation of variables in e(P) - the space of extended random variables for which the expectation is defined - i.e. either E(X+) or E(X-) is defined - rather than the more traditional space L^1(R) - the space of integrable random variables. The source of irritation is that the former is not a vector space. Thus given a variable X in e(P) and another variable Y, in general X+Y will not be defined, for example if EX+ = infinity, EY= - infinity. As a result, one is constantly having to worry about whether one can add variables or not, a real pain. Perhaps an example might help:
Suppose I have two variables X1 AND X2. If I am in the space L^1 then I know both are finite almost everywhere (a.e) and so I can create a third variable Y through addition by setting say Y = X1+X2. In the treatment here however, I have to be careful since it is not a priori clear that X1+X2 is defined a.e. What I need is - one of the proofs in the book - that E(X1)+E(X2) be defined (i.e. it is not the case that one is + infinity the other -infinity). If both E(X1)and E(X2) are finite this reduces to the L^1 case. However, because the Author chooses to work in e(P), we still have, in order to show even this basic result, quite a bit of boring work to do. Specifically: if E(X1) = +infinity then we must have, recall the definition of e(P), that E(X1^+)= +infinity AND E(X1-) < -infinity and also, because E(X1)+E(X2) is defined E(X2)> -infinity and so , since X2 is in e(P), that E(X2^-)< -infinity. Now since,
(X1+X2)^-
Ссылка удалена правообладателем
----
The book removed at the request of the copyright holder.