|
|
libcats.org
Connectivity properties of group actions on non-positively curved spacesRobert Bieri, Ross GeogheganGeneralizing the Bieri-Neumann-Strebel-Renz Invariants, this Memoir presents the foundations of a theory of (not necessarily discrete) actions $\rho$ of a (suitable) group $G$ by isometries on a proper CAT(0) space $M$. The passage from groups $G$ to group actions $\rho$ implies the introduction of 'Sigma invariants' $\Sigma^k(\rho)$ to replace the previous $\Sigma^k(G)$ introduced by those authors. Their theory is now seen as a special case of what is studied here so that readers seeking a detailed treatment of their theory will find it included here as a special case. We define and study 'controlled $k$-connectedness $(CC^k)$' of $\rho$, both over $M$ and over end points $e$ in the 'boundary at infinity' $\partial M$; $\Sigma^k(\rho)$ is by definition the set of all $e$ over which the action is $(k-1)$-connected. A central theorem, the Boundary Criterion, says that $\Sigma^k(\rho) = \partial M$ if and only if $\rho$ is $CC^{k-1}$ over $M$.An Openness Theorem says that $CC^k$ over $M$ is an open condition on the space of isometric actions $\rho$ of $G$ on $M$. Another Openness Theorem says that $\Sigma^k(\rho)$ is an open subset of $\partial M$ with respect to the Tits metric topology. When $\rho(G)$ is a discrete group of isometries the property $CC^{k-1}$ is equivalent to ker$(\rho)$ having the topological finiteness property type '$F_k$'. More generally, if the orbits of the action are discrete, $CC^{k-1}$ is equivalent to the point-stabilizers having type $F_k$. In particular, for $k=2$ we are characterizing finite presentability of kernels and stabilizers. Examples discussed include: locally rigid actions, translation actions on vector spaces (especially those by metabelian groups), actions on trees (including those of $S$-arithmetic groups on Bruhat-Tits trees), and $SL_2$ actions on the hyperbolic plane.
Скачать книгу бесплатно (pdf, 1.00 Mb)
Читать «Connectivity properties of group actions on non-positively curved spaces» EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.
Популярные книги за неделю:
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Только что пользователи скачали эти книги:
GravitationАвтор: Charles W. Misner, Автор: Kip S. Thorne, Автор: John Archibald Wheeler, Автор: John Wheeler, Автор: Kip ThorneКатегория: Physics
Размер книги: 11.43 Mb
100 страниц в часАвтор: Вормсбехер В.Ф., Автор: Кабин В.А.Категория: Другие общественные науки
Размер книги: 52.63 Mb
Die Schuldrechtsklausur: Kernprobleme der vertraglichen Schuldverhältnisse in der Fallbearbeitung 3. AuflageАвтор: Peter Balzer, Автор: Stefan Kröll, Автор: Bernd Scholl
Размер книги: 3.54 Mb
Biology: The Unity and Diversity of LifeАвтор: Cecie Starr, Автор: Ralph Taggart, Автор: Christine Evers, Автор: Lisa Starr
Размер книги: 103.56 Mb
|
|
|