libcats.org
Главная

Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration

Обложка книги Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration

Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration

,
A simulation-based non-linear filter is developed for prediction and smoothing in non-linear and/or non-normal structural time-series models. Recursive algorithms of weighting functions are derived by applying Monte Carlo integration. Through Monte Carlo experiments, it is shown that (1) for a small number of random draws (or nodes) our simulation-based density estimator using Monte Carlo integration (SDE) performs better than Kitagawa's numerical integration procedure (KNI), and (2) SDE and KNI give less biased parameter estimates than the extended Kalman filter (EKF). Finally, an estimation of per capita final consumption data is taken as an application to the non-linear filtering problem.
Ссылка удалена правообладателем
----
The book removed at the request of the copyright holder.
Популярные книги за неделю:
Только что пользователи скачали эти книги:
#4

Анна Кайа Руны

Категория: society, society, religion
4.34 Mb