|
|
libcats.org
Главная →
A boundary-value problem for the biharmonic equation and the iterated Laplacian in a 3D-domain with an edgeA boundary-value problem for the biharmonic equation and the iterated Laplacian in a 3D-domain with an edgeNazarov S. A., Sweers G. H.Let Ω be a domain with piecewise smooth boundary. In general, it is impossible to obtain a generalized solution u ∈ W 2 2 (Ω) of the equation with the boundary conditions by solving iteratively a system of two Poisson equations under homogeneous Dirichlet conditions. Such a system is obtained by setting v = −Δu. In the two-dimensional case, this fact is known as the Sapongyan paradox in the theory of simply supported polygonal plates. In the present paper, the three-dimensional problem is investigated for a domain with a smooth edge Γ. If the variable opening angle α ∈ is less than π everywhere on the edge, then the boundary-value problem for the biharmonic equation is equivalent to the iterated Dirichlet problem, and its solution u inherits the positivity preserving property from these problems. In the case α ∈ (π, 2π), the procedure of solving the two Dirichlet problems must be modified by permitting infinite-dimensional kernel and co-kernel of the operators and determining the solution u ∈ (Ω) by inverting a certain integral operator on the contour Γ. If α(s) ∈ (3π/2,2π) for a point s ∈ Γ, then there exists a nonnegative function f ∈ (Ω) for which the solution u changes sign inside the domain Ω. In the case of crack (α = 2π everywhere on Γ), one needs to introduce a special scale of weighted function spaces. In this case, the positivity preserving property fails. In some geometrical situations, the problems on well-posedness for the boundary-value problem for the biharmonic equation and the positivity property remain open.
Скачать книгу бесплатно (pdf, 650 Kb)
Читать «A boundary-value problem for the biharmonic equation and the iterated Laplacian in a 3D-domain with an edge» EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.
Популярные книги за неделю:
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Только что пользователи скачали эти книги:
Framing Public Life: Perspectives on Media and Our Understanding of the Social WorldАвтор: Stephen D. Reese, Автор: Oscar H. Gandy Jr., Автор: August E. Grant
Размер книги: 2.57 Mb
Hebbeker. Physik I (neu). 3. Newtonsche Mechanik, 2 (de)(T)(C)(36s).djvuАвтор:
Размер книги: 1.68 Mb
Calculus (Quantitative Applications in the Social Sciences)Автор: Gudmund R. IversenКатегория: Математика, Прикладная математика
Размер книги: 766 Kb
Video Color Correction for Non-Linear Editors: A Step-by-Step GuideАвтор: Stuart Blake Jones
Размер книги: 6.78 Mb
Managing Knock Your Socks Off Service (Knock Your Socks Off Series)Автор: Chip R. Bell, Автор: Ron Zemke
Размер книги: 1.03 Mb
Por qué Orar, Cómo Orar (El Pozo de Siquem, 264)Автор: Enzo Bianchi; María del Carmen Blanco Moreno (tr.)
Размер книги: 4.08 Mb
Sell It on eBay: TechTV's Guide to Successful Online AuctionsАвтор: Jim Heid, Автор: Toby Malina
Размер книги: 17.37 Mb
|
|
|