|
libcats.org
Bialgebraic StructuresW. B. Vasantha KandasamyGenerally the study of algebraic structures deals with the concepts like groups, semigroups, groupoids, loops, rings, near-rings, semirings, and vector spaces. The study of bialgebraic structures deals with the study of bistructures like bigroups, biloops, bigroupoids, bisemigroups, birings, binear-rings, bisemirings and bivector spaces.
A complete study of these bialgebraic structures and their Smarandache analogues is carried out in this book. For examples: A set (S, +, .) with two binary operations ‘+’ and '.' is called a bisemigroup of type II if there exists two proper subsets S1 and S2 of S such that S = S1 U S2 and (S1, +) is a semigroup. (S2, .) is a semigroup. Let (S, +, .) be a bisemigroup. We call (S, +, .) a Smarandache bisemigroup (S-bisemigroup) if S has a proper subset P such that (P, +, .) is a bigroup under the operations of S. Let (L, +, .) be a non empty set with two binary operations. L is said to be a biloop if L has two nonempty finite proper subsets L1 and L2 of L such that L = L1 U L2 and (L1, +) is a loop. (L2, .) is a loop or a group. Let (L, +, .) be a biloop we call L a Smarandache biloop (S-biloop) if L has a proper subset P which is a bigroup. Let (G, +, .) be a non-empty set. We call G a bigroupoid if G = G1 U G2 and satisfies the following: (G1 , +) is a groupoid (i.e. the operation + is non-associative). (G2, .) is a semigroup. Let (G, +, .) be a non-empty set with G = G1 U G2, we call G a Smarandache bigroupoid (S-bigroupoid) if G1 and G2 are distinct proper subsets of G such that G = G1 U G2 (G1 not included in G2 or G2 not included in G1). (G1, +) is a S-groupoid. (G2, .) is a S-semigroup. A nonempty set (R, +, .) with two binary operations ‘+’ and '.' is said to be a biring if R = R1 U R2 where R1 and R2 are proper subsets of R and (R1, +, .) is a ring. (R2, +, .) is a ring. A Smarandache biring (S-biring) (R, +, .) is a non-empty set with two binary operations ‘+’ and '.' such that R = R1 U R2 where R1 and R2 are proper subsets of R and (R1, +, .) is a S-ring. (R2, +, .) is a S-ring. EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.
Популярные книги за неделю:
#1
![]() Самодельные детали для сельского радиоприемникаАвторы: З.Б.Гинзбург, Ф.И.Тарасов.Категория: радиоэлектроника
1.40 Mb
#5
![]() Тестирование Дот Ком, или Пособие по жестокому обращению с багами в интернет-стартапахРоман Савин
5.26 Mb
#7
![]() Система упражнений по развитию способностей человека (Практическое пособие)Петров Аркадий НаумовичКатегория: Путь к себе
818 Kb
#8
![]() НЛП. Люди, которые играют ролиБакиров АнварКатегория: Нейро-лингвистическое программирование (НЛП)
1.09 Mb
Только что пользователи скачали эти книги:
#1
![]() И грянул гром… (Том 4-й дополнительный)Ирвинг Вашингтон, По Эдгар, Роудс Уильям, Бирс Амброз, Беллами Эдуард, Твен Марк, Кэмпбелл Джон, дель Рей Лестер, Вейнбаум Стенли, Лейнстер Муррей, Пэджетт Льюис, ван Фогт Альфред Э, Хайнлайн Роберт, Азимов Айзек, Саймак Клиффорд, Старджон Теодор, Шекли РКатегория: Научная Фантастика
1.84 Mb
|
|