|
|
libcats.org
Bialgebraic StructuresW. B. Vasantha KandasamyGenerally the study of algebraic structures deals with the concepts like groups, semigroups, groupoids, loops, rings, near-rings, semirings, and vector spaces. The study of bialgebraic structures deals with the study of bistructures like bigroups, biloops, bigroupoids, bisemigroups, birings, binear-rings, bisemirings and bivector spaces.
A complete study of these bialgebraic structures and their Smarandache analogues is carried out in this book. For examples: A set (S, +, .) with two binary operations ‘+’ and '.' is called a bisemigroup of type II if there exists two proper subsets S1 and S2 of S such that S = S1 U S2 and (S1, +) is a semigroup. (S2, .) is a semigroup. Let (S, +, .) be a bisemigroup. We call (S, +, .) a Smarandache bisemigroup (S-bisemigroup) if S has a proper subset P such that (P, +, .) is a bigroup under the operations of S. Let (L, +, .) be a non empty set with two binary operations. L is said to be a biloop if L has two nonempty finite proper subsets L1 and L2 of L such that L = L1 U L2 and (L1, +) is a loop. (L2, .) is a loop or a group. Let (L, +, .) be a biloop we call L a Smarandache biloop (S-biloop) if L has a proper subset P which is a bigroup. Let (G, +, .) be a non-empty set. We call G a bigroupoid if G = G1 U G2 and satisfies the following: (G1 , +) is a groupoid (i.e. the operation + is non-associative). (G2, .) is a semigroup. Let (G, +, .) be a non-empty set with G = G1 U G2, we call G a Smarandache bigroupoid (S-bigroupoid) if G1 and G2 are distinct proper subsets of G such that G = G1 U G2 (G1 not included in G2 or G2 not included in G1). (G1, +) is a S-groupoid. (G2, .) is a S-semigroup. A nonempty set (R, +, .) with two binary operations ‘+’ and '.' is said to be a biring if R = R1 U R2 where R1 and R2 are proper subsets of R and (R1, +, .) is a ring. (R2, +, .) is a ring. A Smarandache biring (S-biring) (R, +, .) is a non-empty set with two binary operations ‘+’ and '.' such that R = R1 U R2 where R1 and R2 are proper subsets of R and (R1, +, .) is a S-ring. (R2, +, .) is a S-ring. EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.
Популярные книги за неделю:
Тестирование Дот Ком, или Пособие по жестокому обращению с багами в интернет-стартапахАвтор: Роман Савин
Размер книги: 5.26 Mb
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Только что пользователи скачали эти книги:
Ч.Кантор, П.Шиммел. Биофизическая химия в трех томах, Том 3 (1984, djvu)Автор:
Размер книги: 8.02 Mb
Einstein's space-time: an introduction to special and general relativityАвтор: Rafael Ferraro
Размер книги: 2.76 Mb
Readings for the Financial Risk ManagerАвтор: GARP (Global Association of Risk Professionals)
Размер книги: 201.91 Mb
SaaS 100 Success Secrets - How companies successfully buy, manage, host and deliver software as a service (SaaS)Автор: Gerard Blokdijk
Размер книги: 997 Kb
Algebraic Combinatorics: Lectures on Arrangements and Cellular Resolutions at a Summer School in Nordfjordeid, Norway, 2003 (Universitext)Автор: Peter Orlik, Автор: Volkmar WelkerКатегория: Математика, Алгебра
Размер книги: 1.75 Mb
Selected Poems of Byron (Wordsworth Poetry) (Wordsworth Poetry Library)Автор: George Gordon Byron
Размер книги: 8.78 Mb
|
|
|