|
|
libcats.org
Navier-Stokes equations and nonlinear functional analysisRoger TemamThis second edition, like the first, attempts to arrive as simply as possible at some central problems in the Navier-Stokes equations in the following areas: existence, uniqueness, and regularity of solutions in space dimensions two and three; large time behavior of solutions and attractors; and numerical analysis of the Navier-Stokes equations. Since publication of the first edition of these lectures in 1983, there has been extensive research in the area of inertial manifolds for Navier-Stokes equations. These developments are addressed in a new section devoted entirely to inertial manifolds.
Inertial manifolds were first introduced under this name in 1985 and, since then, have been systematically studied for partial differential equations of the Navier-Stokes type. Inertial manifolds are a global version of central manifolds. When they exist they encompass the complete dynamics of a system, reducing the dynamics of an infinite system to that of a smooth, finite-dimensional one called the inertial system. Although the theory of inertial manifolds for Navier-Stokes equations is not complete at this time, there is already a very interesting and significant set of results which deserves to be known, in the hope that it will stimulate further research in this area. These results are reported in this edition. Part I presents the Navier-Stokes equations of viscous incompressible fluids and the main boundary-value problems usually associated with these equations. The case of the flow in a bounded domain with periodic or zero boundary conditions is studied and the functional setting of the equation as well as various results on existence, uniqueness, and regularity of time-dependent solutions are given. Part II studies the behavior of solutions of the Navier-Stokes equation when t approaches infinity and attempts to explain turbulence. Part III treats questions related to numerical approximation. In the Appendix, which is new to the second edition, concepts of inertial manifolds are described, definitions and some typical results are recalled, and the existence of inertial systems for two-dimensional Navier-Stokes equations is shown.
Популярные книги за неделю:
Проектирование и строительство. Дом, квартира, садАвтор: Петер Нойферт, Автор: Людвиг Нефф
Размер книги: 20.83 Mb
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Радиолюбительские схемы на ИС типа 555Автор: Трейстер Р.Категория: Электротехника и связь
Размер книги: 13.64 Mb
Genki 1: An Integrated Course in Elementary Japanese 1Автор: Eri Banno, Автор: Yutaka Ohno, Автор: Yoko Sakane, Автор: Chikako Shinagawa, Автор:
Размер книги: 172.22 Mb
Только что пользователи скачали эти книги:
Вторжение в ПерсейАвтор: Снегов СергейКатегория: Эпическая фантастика, Научная Фантастика
Размер книги: 879 Kb
Мудрость прощения. Доверительные беседыАвтор: Гьяцо Тензин, Автор: Чен ВикторКатегория: Буддизм
Размер книги: 585 Kb
Ирина Царева. Непознанное, отвергнутое или сокрытое? (Энциклопедия загадочного и неведомого)Автор:
Размер книги: 742 Kb
The River We Have Wrought: A History of the Upper MississippiАвтор: John O. Anfinson
Размер книги: 3.84 Mb
Рост растений и дифференцировкаАвтор: Уоринг Ф., Автор: Филипс И.Категория: Растения Монография
Размер книги: 13.91 Mb
God and Greek Philosophy: Studies in the Early History of Natural TheologyАвтор: Lloyd P. Gerson
Размер книги: 40.45 Mb
|
|
|