Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S.
These types of structures occur in our everyday's life, that's why we study them in this book.
Thus, as a particular case:
A Non-associative ring is a non-empty set R together with two binary operations '+' and '.' such that (R, +) is an additive abelian group and (R, .) is a groupoid. For all a, b, c in R we have (a + b) . c = a . c + b . c and c . (a + b) = c . a + c . b.
A Smarandache non-associative ring is a non-associative ring (R, +, .) which has a proper subset P in R, that is an associative ring (with respect to the same binary operations on R).
Ссылка удалена правообладателем ---- The book removed at the request of the copyright holder.