По своему характеру эта книга гораздо ближе к учебнику, чем к монографии, предназначенной для специалистов. Это сказывается прежде всего в выборе материала: автор стремился дать лишь действительно основное и важнейшее в рассматриваемой области, но зато в развернутом изложении со всесторонним освещением предмета.По характеру изложения книга должна быть вполне доступна студенту III курса университета.Другой характерной чертой книги являются выходы из области тензорного анализа и римановой геометрии в механику и физику; эти выходы автор старался указывать везде, где это было возможно. Как известно, наиболее замечательные приложения тензорный анализ и рнманова геометрия имеют в области теории относительности; ей посвящены IV и X главы книги.Особую роль играет глава I; она носит как бы пропедевтический характер и развивает тензорные методы с их приложениями к механике и физике в простейшем (даже тривиальном) случае обычного пространства в прямоугольных декартовых координатах. Эта глава по уровню изложения должна быть доступна инженеру и студенту втуза, которые пожелали бы познакомиться с элементами тензорного анализа в минимальном объеме, необходимом для технических приложений.Для читателя, знакомого с предыдущей книгой автора «Введение в риманову геометрию и тензорный анализ», заметим, что по сравнению с ней излагаемый материал сильно увеличился. В настоящее время нельзя пройти мимо псевдоевклидовых и исевдоримановых пространств (кстати, необходимых для теории относительности) и пространств аффинной связности. Эти вопросы нашли место в книге. На ряде примеров даны также основные идеи теории геометрических объектов, в том числе теория спиноров в четырехмерном пространстве...