libcats.org
Главная

Инверсия.

Нет обложки

Инверсия.

В геометрии основную роль играют различные преобразования фигур. В школе подробно изучаются движения и гомотетии, а также их приложения. Важной особенностью этих преобразований является сохранение ими природы простейших геометрических образов: прямые переводятся в прямые, а окружности в окружности. Инверсия представляет собой более сложное преобразование геометрических фигур, при котором прямые уже могут переходить в окружности, и наоборот. Такой подход позволяет дать в применении к задачам элементарной геометрии единообразную методику изучения. Это прежде всего относится к задачам на построение и к теории пучков окружностей. Следует отметить, что рассмотрение указанных разделов элементарной геометрии без применения инверсии связано с привлечением разнообразных, большей частью довольно искусственных построений, носящих частный характер. Кроме указанных приложений, инверсия применяется также в пограничных вопросах элементарной и так называемой высшей геометрии. Речь идет об интерпретации геометрии Лобачевского на евклидовой плоскости. Интересны связи инверсии с комплексными числами, точнее, с простейшими функциями, аргументом и значениями которых являются комплексные числа. Настоящая книга посвящена преобразованию инверсии и ряду ее приложений. Для удобства изложения материал разбит на три главы. В первой главе подробно изучается преобразование инверсии и даются ее приложения к вопросам элементарной геометрии. Во второй главе показано, что преобразования, рассмотренные в главе I, могут быть заданы линейными и дробно-линейными функциями комплексного аргумента. Устанавливается также, что и обратно, такие функции описывают преобразования плоскости, сводящиеся к последовательному выполнению движений, гомотетии и, может быть, инверсий. В третьей главе излагается теоретико-групповая точка зрения обоснования геометрии, с помощью которой, опираясь на материал глав I и II, строятся кратко планиметрия Евклида и планиметрия Лобачевского. Более подробное изложение вопросов, затронутых в главе III, читатель может найти в книге Н.В.Ефимова "Высшая геометрия". В основу настоящей книги легли лекции, прочитанные автором в разное время школьникам г.Ленинграда.
Популярные книги за неделю:
Только что пользователи скачали эти книги: