libcats.org
Главная

Positive Polynomials Convex Integral Polytopes and a Random Walk Problem

Обложка книги Positive Polynomials Convex Integral Polytopes and a Random Walk Problem

Positive Polynomials Convex Integral Polytopes and a Random Walk Problem

Emanating from the theory of C*-algebras and actions of tori theoren, the problems discussed here are outgrowths of random walk problems on lattices. An AGL (d,Z)-invariant (which is a partially ordered commutative algebra) is obtained for lattice polytopes (compact convex polytopes in Euclidean space whose vertices lie in Zd), and certain algebraic properties of the algebra are related to geometric properties of the polytope. There are also strong connections with convex analysis, Choquet theory, and reflection groups. This book serves as both an introduction to and a research monograph on the many interconnections between these topics, that arise out of questions of the following type: Let f be a (Laurent) polynomial in several real variables, and let P be a (Laurent) polynomial with only positive coefficients; decide under what circumstances there exists an integer n such that Pnf itself also has only positive coefficients. It is intended to reach and be of interest to a general mathematical audience as well as specialists in the areas mentioned.
Популярные книги за неделю:

О физической природе шаровой молнии

Автор:
Категория: science, science, exact
Размер книги: 5.03 Mb

Ключ к сверхсознанию

Автор:
Категория: Путь к себе
Размер книги: 309 Kb

Древо жизни

Автор:
Категория: Путь к себе
Размер книги: 1.70 Mb

Здоровье надо созидать

Автор:
Категория: Здоровье
Размер книги: 363 Kb
Только что пользователи скачали эти книги:

Edutainment

Автор:
Размер книги: 2 Kb

Dictionary of Environmental Economics

Автор: , Автор: , Автор: , Автор:
Размер книги: 2.03 Mb

Медуза: прыжок тигра.

Автор:
Категория: Фэнтези
Размер книги: 989 Kb

Horse Crazy

Автор:
Категория: fiction
Размер книги: 10.44 Mb

Mis multiples personalidades

Автор:
Категория: espanol
Размер книги: 2.00 Mb