Lyapunov Exponents
Ludwig Arnold, Volker Wihstutz
Since the predecessor to this volume (LNM 1186, Eds. L. Arnold, V. Wihstutz)appeared in 1986, significant progress has been made in the theory and applications of Lyapunov exponents - one of the key concepts of dynamical systems - and in particular, pronounced shifts towards nonlinear and infinite-dimensional systems and engineering applications are observable. This volume opens with an introductory survey article (Arnold/Crauel) followed by 26 original (fully refereed) research papers, some of which have in part survey character. From the Contents: L. Arnold, H. Crauel: Random Dynamical Systems.- I.Ya. Goldscheid: Lyapunov exponents and asymptotic behaviour of the product of random matrices.- Y. Peres: Analytic dependence of Lyapunov exponents on transition probabilities.- O. Knill: The upper Lyapunov exponent of Sl (2, R) cocycles:Discontinuity and the problem of positivity.- Yu.D. Latushkin, A.M. Stepin: Linear skew-product flows and semigroups of weighted composition operators.- P. Baxendale: Invariant measures for nonlinear stochastic differential equations.- Y. Kifer: Large deviationsfor random expanding maps.- P. Thieullen: Generalisation du theoreme de Pesin pour l' -entropie.- S.T. Ariaratnam, W.-C. Xie: Lyapunov exponents in stochastic structural mechanics.- F. Colonius, W. Kliemann: Lyapunov exponents of control flows.
Ссылка удалена правообладателем
----
The book removed at the request of the copyright holder.