The best way to penetrate the subtleties of the theory of integration is by solving problems. This book, like its two predecessors, is a wonderful source of interesting and challenging problems. As a resource, it is unequaled. It offers a much richer selection than is found in any current textbook. Moreover, the book includes a complete set of solutions.
This is the third volume of Problems in Mathematical Analysis. The topic here is integration for real functions of one real variable. The first chapter is devoted to the Riemann and the Riemann-Stieltjes integrals. Chapter 2 deals with Lebesgue measure and integration.
The authors include some famous, and some not so famous, inequalities related to Riemann integration. Many of the problems for Lebesgue integration concern convergence theorems and the interchange of limits and integrals. The book closes with a section on Fourier series, with a concentration on Fourier coefficients of functions from particular classes and on basic theorems for convergence of Fourier series.