libcats.org
Главная

The elements of statistical learning: Data mining, inference, and prediction

Обложка книги The elements of statistical learning: Data mining, inference, and prediction

The elements of statistical learning: Data mining, inference, and prediction

, ,

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Популярные книги за неделю:

50 рецептов для аэрогриля

Автор:
Категория: house, house, cook
Размер книги: 771 Kb

Ключ к сверхсознанию

Автор:
Категория: Путь к себе
Размер книги: 309 Kb

Contemporary Theatre, Film and Television, Volume 97

Автор:
Размер книги: 3.18 Mb
Только что пользователи скачали эти книги:

Eldon Thompson - Asahiel 01 - The Crimson Sword

Автор:
Размер книги: 791 Kb

Russia's economy

Автор: , Автор:
Категория: G_Economics, GI_International
Размер книги: 377 Kb

Oracle PL/SQL Best Practices

Автор:
Категория: Computer science
Размер книги: 510 Kb

de De ondergang van Ray Morris

Автор:
Категория: fiction
Размер книги: 422 Kb

Jo spot niet met de vrouwtjes

Автор:
Категория: fiction
Размер книги: 157 Kb