Semiclassical approximation to 3j, 6j coeffs
Schulten, Gordon.
The coupling of angular momenta is studied using quantum mechanics in the limit of large quantum numbers (semiclassical limit). Uniformly valid semiclassical expressions are derived for the 3j (Wigner) coefficients coupling two angular momenta, and for the 6j (Racah) coefficients coupling three angular momenta. In three limiting cases our new expressions reduce to those conjectured by Ponzano and Reggc. The derivation involves solving the recursion relations satisfied by these coefficients, by a discrete analog of the WKB method. Terras of the order of the inverse square of the quantum numbers are neglected in the derivation, so that the results should be increasingly accurate for larger angular momenta. Numerical results confirm this asymptotic convergence. Moreover, the results are of a useful accuracy even at small quantum numbers.
Ссылка удалена правообладателем
----
The book removed at the request of the copyright holder.