libcats.org
Главная

Dynamical zeta functions for piecewise monotone maps of the interval

Обложка книги Dynamical zeta functions for piecewise monotone maps of the interval

Dynamical zeta functions for piecewise monotone maps of the interval

Consider a space $M$, a map $f:M\to M$, and a function $g:M \to {\mathbb C}$. The formal power series $\zeta (z) = \exp \sum ^\infty _{m=1} \frac {z^m}{m} \sum _{x \in \mathrm {Fix}\,f^m} \prod ^{m-1}_{k=0} g (f^kx)$ yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval $[0,1]$. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of $(M,f,g)$.
Популярные книги за неделю:

Ключ к сверхсознанию

Автор:
Категория: Путь к себе
Размер книги: 309 Kb

Древо жизни

Автор:
Категория: Путь к себе
Размер книги: 1.70 Mb

Здоровье надо созидать

Автор:
Категория: Здоровье
Размер книги: 363 Kb

Шликерное литье

Автор:
Категория: science, science, technical
Размер книги: 5.98 Mb
Только что пользователи скачали эти книги:

Complex Analysis with Applications

Автор:
Размер книги: 5.12 Mb

Архитектурная графика

Автор:
Категория: color, graph, color, architect
Размер книги: 60.20 Mb

Cherry Point. 'Can Do' and Harrier II

Автор:
Размер книги: 7.04 Mb