|
|
libcats.org
The fast solution of boundary integral equationsSergej Rjasanow; Olaf SteinbachThe use of surface potentials to describe solutions of partial differential equations goes back to the middle of the 19th century. Numerical approximation procedures, known today as Boundary Element Methods (BEM), have been developed in the physics and engineering community since the 1950s. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations. The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations. The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation.
Популярные книги за неделю:
Проектирование и строительство. Дом, квартира, садАвтор: Петер Нойферт, Автор: Людвиг Нефф
Размер книги: 20.83 Mb
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Радиолюбительские схемы на ИС типа 555Автор: Трейстер Р.Категория: Электротехника и связь
Размер книги: 13.64 Mb
Только что пользователи скачали эти книги:
Л.В.Чугаев, И.Н.Масленицкий. Металлургия благородных металлов (1987, djvu)Автор:
Размер книги: 3.91 Mb
Hyperbolic Systems of Balance Laws: Lectures Given at the C.I.M.E. Summer School Held in Cetraro, Italy, July 14-21, 2003Автор: Alberto Bressan, Автор: Denis Serre, Автор: Mark Williams, Автор: Kevin Zumbrun, Автор: Pierangelo Marcati
Размер книги: 2.65 Mb
Mathematik fuer Physiker, Band 1Автор: Fischer H., Автор: Kaul H.Категория: Textbooks
Размер книги: 4.08 Mb
Numerical Methods in Scientific ComputingАвтор: Dahlquist G., Автор: Bjoerck A.Категория: M_Mathematics, MN_Numerical methods
Размер книги: 5.17 Mb
CSS3 Solutions: Essential Techniques for CSS3 DevelopersАвтор: Marco Casario, Автор: Nathalie Wormser, Автор: Dan Saltzman, Автор: Anselm Bradford, Автор: Jonathan Reid, Автор: Francesco Improta, Автор: Aaron Congleton
Размер книги: 6.12 Mb
|
|
|