|
|
libcats.org
Metric structures for Riemannian and non-Riemannian spacesMikhail Gromov, Jacques LaFontaine, Pierre Pansu, S. M. Bates, M. Katz, P. Pansu, S. SemmesMetric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory. The new wave began with seminal papers by Svarc and Milnor on the growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This progress was followed by the creation of the asymptotic metric theory of infinite groups by Gromov. The structural metric approach to the Riemannian category, tracing back to Cheeger's thesis, pivots around the notion of the Gromov–Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy–Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity. The first stages of the new developments were presented in Gromov's course in Paris, which turned into the famous "Green Book" by Lafontaine and Pansu (1979). The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices—by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures—as well as an extensive bibliography and index round out this unique and beautiful book.
Популярные книги за неделю:
Проектирование и строительство. Дом, квартира, садАвтор: Петер Нойферт, Автор: Людвиг Нефф
Размер книги: 20.83 Mb
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Радиолюбительские схемы на ИС типа 555Автор: Трейстер Р.Категория: Электротехника и связь
Размер книги: 13.64 Mb
Только что пользователи скачали эти книги:
John Warner - This Is Not A Story About Grief (Story from Fictionline.com)Автор: Warner John
Размер книги: 26 Kb
Орудийные панорамы ПГ и ПГ-1, коллиматор К-1 и оптические прицелы ПП-1, ПП1-2 и ПП1-3. Руководство по срочному ремонтуАвтор:Категория: Военная техника
Размер книги: 2.25 Mb
Растения Центральной Азии. По материалам Ботанического института им. В.Л.Комарова. Вып. 5. Вербеновые - Норичниковые. Л., 1970Автор:
Размер книги: 2.77 Mb
Внешняя политика Советского Союза в период Отечественной войны. 1 января - 31 декабря 1944 г. Документы и материалы.Автор:Категория: политика, политическая наука
Размер книги: 6.57 Mb
Assisted Reproductive Technologies Quality and Safety: Quality and SafetyАвтор: Jan Gerris, Автор: Francois Olivennes, Автор: Petra de Sutter
Размер книги: 2.48 Mb
PHP Objects, Patterns and PracticeАвтор: Matt ZandstraКатегория: КНИГИ ПРОГРАММИНГ
Размер книги: 8.49 Mb
Managing Information Technology in Small Business: Challenges and SolutionsАвтор: Stephen Burgess
Размер книги: 1.12 Mb
|
|
|