libcats.org
Главная

Volterra integral and differential equations

Обложка книги Volterra integral and differential equations

Volterra integral and differential equations

Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied to many particular examples in ordinary differential equations, Volterra integro-differential equations, and functional differential equations.



By Chapter 7 the momentum has built until we are looking at problems on the frontier. Chapter 7 is entirely new, dealing with fundamental problems of the resolvent, Floquet theory, and total stability. Chapter 8 presents a solid foundation for the theory of functional differential equations. Many recent results on stability and periodic solutions of functional differential equations are given and unsolved problems are stated.



Key Features:



- Smooth transition from ordinary differential equations to integral and functional differential equations.

- Unification of the theories, methods, and applications of ordinary and functional differential equations.

- Large collection of examples of Liapunov functions.

- Description of the history of stability theory leading up to unsolved problems.

- Applications of the resolvent to stability and periodic problems.

1. Smooth transition from ordinary differential equations to integral and functional differential equations.
2. Unification of the theories, methods, and applications of ordinary and functional differential equations.
3. Large collection of examples of Liapunov functions.
4. Description of the history of stability theory leading up to unsolved problems.
5. Applications of the resolvent to stability and periodic problems.

Популярные книги за неделю:

ВАЗ 2110i, -2111i, -2112i

Автор:
Категория: civil, civil, transport
Размер книги: 57.35 Mb

50 рецептов для аэрогриля

Автор:
Категория: house, house, cook
Размер книги: 771 Kb

Ключ к сверхсознанию

Автор:
Категория: Путь к себе
Размер книги: 309 Kb
Только что пользователи скачали эти книги:

Mastering JBuilder

Автор: , Автор: , Автор:
Размер книги: 10.30 Mb

Введение в философию

Автор:
Категория: Учебники
Размер книги: 403 Kb

Crescendo

Автор:
Категория: fiction
Размер книги: 2.26 Mb

Revenge of Innocents

Автор:
Категория: fiction
Размер книги: 375 Kb

Stars for the Toff

Автор:
Категория: fiction
Размер книги: 131 Kb

Revanche In New York

Автор:
Категория: fiction
Размер книги: 497 Kb