libcats.org
Главная

Learning kernel classifiers. Theory and algorithms

Обложка книги Learning kernel classifiers. Theory and algorithms

Learning kernel classifiers. Theory and algorithms

Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.
EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.
Популярные книги за неделю:

50 рецептов для аэрогриля

Автор:
Категория: house, house, cook
Размер книги: 771 Kb

Ключ к сверхсознанию

Автор:
Категория: Путь к себе
Размер книги: 309 Kb

Contemporary Theatre, Film and Television, Volume 97

Автор:
Размер книги: 3.18 Mb
Только что пользователи скачали эти книги:

Открытие Риэля

Автор:
Размер книги: 198 Kb

A Text-book of the History of Architecture

Автор:
Категория: КНИГИ ДИЗАЙН
Размер книги: 6.69 Mb

The Darkness Before the Dawn

Автор:
Категория: fiction
Размер книги: 260 Kb