|
|
libcats.org
A boundary element method for the Dirichlet eigenvalue problem of the Laplace operatorSteinbach O., Unger G.The solution of eigenvalue problems for partial differential operators byusing boundary integral equation methods usually involves some Newton potentialswhich may be resolved by using a multiple reciprocity approach. Here we proposean alternative approach which is in some sense equivalent to the above. Instead of alinear eigenvalue problem for the partial differential operator we consider a nonlineareigenvalue problem for an associated boundary integral operator. This nonlineareigenvalue problem can be solved by using some appropriate iterative scheme, herewe will consider a Newton scheme.We will discuss the convergence and the boundaryelement discretization of this algorithm, and give some numerical results.
Скачать книгу бесплатно (pdf, 267 Kb)
Читать «A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator» EPUB | FB2 | MOBI | TXT | RTF
* Конвертация файла может нарушить форматирование оригинала. По-возможности скачивайте файл в оригинальном формате.
Популярные книги за неделю:
Проектирование и строительство. Дом, квартира, садАвтор: Петер Нойферт, Автор: Людвиг Нефф
Размер книги: 20.83 Mb
Система упражнений по развитию способностей человека (Практическое пособие)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 818 Kb
Сотворение мира (3-х томник)Автор: Петров Аркадий НаумовичКатегория: Путь к себе
Размер книги: 817 Kb
Радиолюбительские схемы на ИС типа 555Автор: Трейстер Р.Категория: Электротехника и связь
Размер книги: 13.64 Mb
Только что пользователи скачали эти книги:
Пчелы в радость, или Опыт естественного подхода в пасечном делеАвтор: Лазутин ФедорКатегория: Справочная литература
Размер книги: 1.36 Mb
Мужики и бабыАвтор: Д. А. Баранов, Автор: О. Г. Баранова, Автор: Т. А. Зимина, Автор: Е. Л. Мадлевская
Размер книги: 40.29 Mb
Граффити на восточных монетах - Древняя Русь и сопредельные страныАвтор: Добровольский И. Г., Автор: Дубов И. В., Автор: Кузьменко Ю. К.
Размер книги: 13.22 Mb
|
|
|